If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x=20-3x^2
We move all terms to the left:
7x-(20-3x^2)=0
We get rid of parentheses
3x^2+7x-20=0
a = 3; b = 7; c = -20;
Δ = b2-4ac
Δ = 72-4·3·(-20)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-17}{2*3}=\frac{-24}{6} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+17}{2*3}=\frac{10}{6} =1+2/3 $
| 4.3x+7=4.5x-9 | | 4+5x-x=12 | | 4x^2-12x-21=0 | | -5x+3^x=0 | | N-4=n(n2) | | 10-x+2x=19 | | 1/10h-4=0 | | 46/5=2/3x+3x+17 | | 3x+1=-(x+9) | | -70=-x+6x-10 | | ∑n=13(17n−25) | | 1/2(4x-8)=1/3(9x+12) | | 7x-1-4x-6=7 | | -7x+10+3x=8 | | 3(2n-1)=2(5n-4) | | 8^a=60 | | -3/4+5x=17/4 | | 1/49=7^x | | 5n-7=3n+4 | | 25^2x=(1/125)^x+1 | | x-3+2x-5=5 | | 24/6=n/12 | | 4x/3+1=X+5 | | 15x/2+3x=5 | | 24/6=n12/ | | 24/6=n12 | | F(x)=25X^2+175 | | F(x)=25^2+175 | | 1/5×+5=19-1/2x | | -8t^2+32t=0 | | 15=x/3=7 | | 10-x/4=3 |